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A new analytic equation of state for liquid water
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We develop a new analytical equation of state for water based on the Song, Mason, and Ihm
equation of state and Pood al’s simple model of the free energy of strong tetrahedral hydrogen
bonds. Repulsive and attractive forces are modeled using a modification of the Weeks—Chandler—
Anderson decomposition of the pair potential, with closed tetrahedral hydrogen bonds contributing
both internal energy and entropy to the free energy of water. Strong tetrahedral hydrogen bonds are
modeled explicitly using a simplified partition function. The resulting equation of state is 20—30
times more accurate than equivalent simple cubic equations of state over a wide range of pressures
(0.1-3000 bay and temperatures—34—1200 °Q including the supercooled region. The new
equation of state predicts a second liquid—liquid critical point pat =0.954 kbar, pc/

=1.045 gcm?® and T¢,=228.3 K. The temperature of this second critical point is above the
homogeneous freezing temperature at 1 kbar, thus this region of the phase diagram may be
experimentally accessible. The phase diagram also suggests that the homogeneous nucleation
temperature above 1.2 kbar may be determined by a phase transition from high-density water to
low-density water. ©1999 American Institute of Physid$$0021-960609)52701-3

I. INTRODUCTION ture and pressure range-34<T<1200°C, 0.kp
<3000 bar. In Sec. Ill we add the free energy of open hy-
Liquid water exhibits a rich variety of anomalous behav-drogen bond4, and demonstrate the improved predictive
ior, particularly in the supercooled region. Features of theyower of the equation of state in the supercooled region.
phase diagram for water such as the density maximum aection IV presents the resulting phase diagram showing the

4°C and the minima in the isothermal compressibiky  second critical point, and Sec. V contains a discussion and
and |sopar|c spemﬁc he&, are generally acknowledgeq t0 conclusions.
be manifestations of the hydrogen bond structure, which at
low temperatures produces anomalous behavior in which the
internal energy, entropy, and density all decrease with dell- THE BULK EQUATION OF STATE
creasing temperature. A. The Song and Mason equation of state
Below we present an analytic equation of state that . .
i . . In a series of articles Song, Mason, lhm, and
guantitatively captures this behavior at supercooled tempera- 56 : ; . ;
colleague$®® have derived a simple analytic equation of

tres, as well as accurately reproducing the pressure%Iate for nonpolar fluids. Their starting point is the equation

volume—temperature dependence of water over a broa . e . 7
rﬁlatlng pressur@ to the pair distribution functiog(r):

range of temperatures and pressures. We follow the approac

of Pooleet al,? who showed that the density maximum of p 2m p Jw du(r) g(r)ridr &

water can be qualitatively reproduced by combining the van pRT: ~ 3 RTJy dr

der Waals equation of state with a simple partition functionyyhereu(r) is the intermolecular pair potential as a function
describing the density dependen_ce pf the fr_ee_ energy of h}ﬁf radial distance, T the temperaturep the density, andR
drogen bonds. To produce quantitative predictions using thighe jdeal gas constant. Although the derivation of Eb.
approach we extend the work of Poaeal. by: assumes pairwise additivity far(r), many-body effects can

modified version of the equation of state proposed byd(r)- o _ _ )

Song, Mason, and Ihrh. Rearrangement of terms in this equation yields a form in
(2) Modifying the representation of the free energy of hy-Which the second virial coefficienB,(T), appears explicitly

drogen bonds to localize the temperature range over P

which strong hydrogen bonds influence the properties of ~ ,RT 1+Bap+pl, 2

In Sec. Il we briefly review the Song, Mason, and Ihm o —puy o2
(SMI) equation of state, discuss modifications needed to ap- Bz:z”fo (1—e "radr, (3a)
ply it to water, and evaluate its accuracy over the tempera-

2 o0
|=§f0 F(r)[y(r)—1]r3dr, (3b)
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y(r)=efg(r), (30 %
; du _ su 3
ry=— PR
(N=-Bge "™ (39 o |
<
B=1/RT, and the functiong(r) andf(r) are, respectively,
the cavity distribution function and the weighting function. O
The division of Eq.(1) given in Eq.(2) is motivated by =S A< 0.34537
the observation that the attractive forces have a weak depen- Y__'l 0345
dence on density that can be approximated by the second ~ = 5
virial coefficient alone. Thus, which contains higher order < ] Dev=0.018974
terms in density, is dominated by the repulsive forces. To see
explicitly the relative roles played by attraction and repulsion
in the integrall, Tao and Maschfollow Weeks and split ' ' ' '
the pair potentiali(r) into a partuy(r) <0 representing only Lo 15 20 25
repulsive forces and a past(r)=0 representing only attrac- bp
tive forces: FIG. 1. 1G vs bp using Eq.(9), b and « from Taoet al. (Ref. § andB,
u(r)+e r<r from Hill and MacMillan (Ref. 45. Also shown is a best fit straight line
Uo(r)= ! m (4a) with slope —\, y-interceptY;, and rms deviation, Dev. The 80%V-T
0 0, r>ry, ' values are from Haaet al. (Ref. 42 in the range & T<700 °C, 0.K P
<1200 bar, 258p<1015 kg m 3. The discrete lines in the lower half of
—€, II<ry the figure represent isotherms spaced 20 °C. Points in the upper half of the
u(r)= , (4b) figure are above the critical poifRef. 11).
u(r), r>rp

where >0 is the depth of the potential well ang, is the
radial distance at whichi(r) has its minimum value. They represented by Eqs4) and (5) are accurate, a plot of
then assume that the dominant contributiont ttmes from  1/G(bp) versusbp should produce a straight line with inter-
r<r, (repulsive forcesand after some manipulation find cept 1 and slope-\. Ihm et al® have shown that this is the
that case for many noble gas fluids. As Fig. 1 shows, however,
I~a[G(o+)—1] 5) inserting p-V-T data and aB, expression appropriate for
' water into Eqg.(9) produces a relatively poor correlation be-
where G(o ™) is the pair distribution function of hard tween 1G and the best-fit straight line.
spheres at contactr* is the equivalent hard sphere diam-
eter, andw is a temperature dependent function.
Ihm et al3 determined that an accurate empirical expresB. Modifications for a polar fluid

sion forG(o™) is In this section we modify the SMI equation of state so
that it can accurately reproduge V-T measurements for
(6)  water. The modifications consist of:

» Changing the partitioning of the pair potential in Eq.
whereb is a temperature dependent function ani$ a con-  (4) so that the attractive and repulsive contributions are
stant. The produchb is analogous to the van der Waals clearly separated.
excluded volume. Substituting E) into Eq. (5) produces  Evaluating these attractive and repulsive terms using

1 p-V-T measurements and estimates of the hydrogen bond

— 1 (7) energy and entropy.

1=Abp In Secs. Il B 1-11 B 3 we present the the modified equa-
Substituting Eq(7) into Eq. (2) gives the completed Song— tion of state, replacin@®,, «, andb(T) in Eq. (8) with ex-
Mason—lhm equation of state: pressions appropriate for a polar fluid. We use Ibtral.
strong principle of corresponding statd&q. (6)] to deter-
——=1+By(T)p+ap ———1 (8) mine the values for these expressions usingphé-T data
pRT 1-Abp of Fig. 1. A more detailed derivation of the results of this

lhm etal® found expressions for the temperature-S€ction is available in a separate Appentfix.
dependent coefficients andb in terms of the pair potential o _ _
u(r). Given these coefficients ar8h,, the pair distribution 1. Partitioning the pair potential

G(oh)= ,
(") 1-\bp

l=a

p

function can then be expressed using 8j).as a function of To find an alternative to the partitioning given by Eg)
p, p, andT that unambiguously separates the attractive and repulsive
p contributions of the pair potential, we begin by splitting)
G(bp)= ORT 1+(a—By)p|/ap. (9) into its attractive and repulsive parts

We can usep-V-T data and Eq(9) to calculate values u(r)= Un(r), r=rm

: (10)
of G. From Eq.(6) it can be seen that, if the approximations up(r), r<rp
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wherer is the radial coordinate ang, is the distance to the
minimum of the potential.

Inserting Eq.(10) into Eq. (1) yields

p . 27 p (=du 3
pRT 173 RTJ, ar 9O
27 p rmdu2 3
"3 RT), g(r)r dr

where the subscriptd andR refer to attractive and repulsive,
respectively.

2. Expressions for U , and Uy

The attractive contributiotd 5 in Eq. (11) can be ob-

C. A. Jeffrey and P. H. Austin

Ugr~aG(o")
. o
~1-\bp"

Substituting Eqs(16)—(18) into Eq. (11) produces the
modified equation of state

(18

P . aVWP ap
oRT LR RT T I m,
=1+|a— b*—aﬂv ptap|l————1 (19
RT 1-bp |’

3. Determining b *, e, and b (T) for liquid water

In the SMI equation of state the temperature dependence
of both « and b are determined by integrating over an ap-
proximate intermolecular potential for nonpolar fluids. They

tained from the free energy due to the attractive part of thdind that« depends only weakly on temperature fofl2,6

potential, AV, via

1 9A®
Un=R7 g5 42
where
A(1)=—gf uy(r)g(r)dmrdr (13
rm

with uy(r) defined in Eq(10).

potential; we will treata as constant when we estimate its
value for water below. The excluded volume tefmin-
creases with decreasing temperature fail2a,6 potential.
This increase will be larger for water than for a nonpolar
fluid, because below 4 °C at 1 bar the specific volume in-
creases rapidly with decreasing temperature. We will specify
a functional form ofb(T) that increases with decreasifg
and usep-V-T data to estimate two undetermined coeffi-
cientsb, andb,

b(T)/UB 0. 2591/(23T/TB+05) b e2 3T/TB+b

(20

This expression for the free energy is analogous to the
first-order contribution of attractive forces to the free energy'Ve show the fitted form of E¢(20) in Sec. IIl B below.

of a van der Waals liquidwhich we write as

Al =—a*p, (14)

wherea* includes the effect of hydrogen bonds. To estimate

a* note that hydrogen bonds contribute entrofyg, as
well as energygeyg to the partition function so tha* can
be written as the sum of these contributions

a*=a+b*RT, (159
a~eyslp, (15b
~Sus/Rp. (159
Substituting Eq(1539 into Eq.(14) and using Eq(12) yields
=—-b*-a/RT. (16)

ThusU,-RTp is simply the van der Waals attractive force
—aywp With an additional entropy term-b* RTp. Because
of the similar role played by anday,y in this derivatiort®
the value ofa, will be used fora below

27R2T?
€ —~0.5542 Pafimol2

3 "

a= aVW:

Given Eq.(19), the new expression fdg(bp) is

G(bp)=1/(1—\bp) (214
PP L «_ 2w
=1+ oRT 1- (a b RT) lap. (21b

We use nonlinear least squaf&® fit «, b*, by, andb,,
minimizing the difference between G/found using Eq.
(21b) with p-V-T data and X5 computed using from Eq.
(19). Figure 2 shows the final fit with the data of Fig. 1. The
factor of 0.25 in Eq.(20), which is absorbed in\b(T), is
chosen so thak~0.3. From Fig. 2 the final value of is
0.3159, with the final fit returninga/vg=2.145, b*/vg
=1.0823,b;=0.027 74 and,=0.235 78, wherajz denotes
the Boyle volumé? These best fit values far andb* differ
by only 0.2% and 5%, respectively, from simple estimates
based on the entropy and free energy of wit€@omparing
values ofDev in Figs. 1 and 2, wherBev is the root-mean-
square(rms) deviation between @ calculated using Egs.
(219 and Eqg.(21b), shows that the modified equation of
state reduceBev by an order of magnitude compared with
the fit usingB, in Fig. 1.

Figure 3 and Table | show a comparison of densities
calculated using the new equation of stiey. (19)], the
Song and Mason equation of stdteg. (2)], the Peng Rob-

where T and p¢ are, respectively, the critical temperature inson equation of staté,and the van der Waals equation of

and pressure for watét.
To evaluateUy we follow Song and Masdrin expand-

ingy(r)inr

state. For this comparison we used the data of Fig. 1 plus an
additional 1050-V-T measurements of water vapor to cover
the range: 8&T<370°C, 0.4p<200 bar, 0.16p
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TABLE |. Comparison of the average rms percentage deviation of the pre-
dicted density of four equations of state. Data is in the rangeTO
<1200 °C, 0.Kp<3000 bar, 0.16 p<1025 kg m' 3. Note that water va-

por data is included but not densities greater than 1025 kg m

0.8

Peng—Robinson

Present Song & Mason  (Ref. 13 van der Waals

/G
0.6

Deviation 0.507 11.06 21.7 59.7

A=0.31586
Y, = 0.99999
Dev=0.0012164

The supercooled data is from Hare and Soretfsand also
includes high-pressurp-V-T data produced by integrating
Hare and Sorensen’s density measurements assuming the
speed of sound correlation of Petitstal1®

Figure 4 shows a systematic deviation from the law of
strong corresponding states at both small and large values of
bp. The supercooled data falls into two clusters in the
bottom-right hand corner of the figure. The cluster lying
along the best fit line is supercooled data in the region where
the density of water anomalously decreases with decreasing
temperature. The diverging points above the best fit lines are
<145 kg m 3 Taoet al® derived a correction term for Eq. high-pressure—high-density data in which the density
(8) that improves the ability of the SMI equation of state for anomaly is suppressed. In Sec. Ill below we show that the fit
vapour pressures; this correction term, adapted for(E®),  in this highbp region can be significantly improved by ex-
is discussed in Appendix A and has been used in Fig. 3 anglicitly incorporating strong hydrogen bonds into the equa-
Table | for both the SMI and the new equation of state. Astion of state.
shown in Table |, the new equation of state is on average
20-30 times more accurate than these other cubic equations THE EFFECT OF HYDROGEN BONDS
of state.

It is more difficult to fit Eq.(21) to p-V-T data that
includes either pressures and temperatures above but close
the critical pressure, to high-density datgp>1025
kg m~3) or to supercooled data. Figure 4 shows the best fi
with the addition of data near the critical pressure and tem
perature(upper left hand corner of the plo25 high density
data points (8<T<150 °C, 306<p<3000 bar, 1025p
<1109 kgm?®), and 245 supercooled points—B4<T
<0°C, 1<p<500 bar, lower right hand corner of the plot

04

0.5 10 15 20
bp

FIG. 2. 16 vsbp using Eqs(18), (19), and thep-V-T data of Fig. 1. Also
shown is a best fit straight line with slope y-interceptY;,, and rms devia-
tion, Dev.

In the derivation of the present equation of state, hydro-
gen bonds(HBs) with energy —aywpe and entropy—b*p
provide the attractive force that holds the fluid together, i.e.,
?t a given temperature and pressure the effect of HBs is to
Increase the density. Below we will extend the equation of
state to describe the behavior of water as it is cooled below
4 °C. When water is cooled below this temperature at atmo-
spheric pressure its density, entropy and internal energy all
decrease due to the formation of hydrogen bonds in an open,

o
<
< | Average % Deviations -
o Present=0.5071 S z’:‘e&t
S & M=11.06 Pene R w
Peng R.=21.73 T \e]n%v - & -
4 V.W=5067 —— V.W.
S
= L
g /’ Q A=031714
2 — <
ER R - S Yi= 1.0021
z :: 2 Dev=0.00520495
5 i Py
a i
&9 emmT - < |
N i s . 3
F~_7/
,"' ,’/\\./ T e
< A == .- I I I I |
T T T T T T 0.0 0.5 1.0 1.5 2.0
0 200 400 600 800 bp

-3
pkgm™)
FIG. 4. 1G vs bp as in Fig. 2. 1256-V-T values are from Haaet al.
FIG. 3. Comparison of the predictive accuracy of four equations of state(Ref. 42 in the range 8T<1200 °C, 0.Kp<3000 bar, 10&p<1109

The 1486p-V-T values are from Haaet al. (Ref. 42 in the range & T
<1200 °C, 0.Xp<3000 bar, 0.16 p<1025 kg m 3. Data was binned
(bin width=24 kg m %), and rms percentage deviations of the predicted
density calculated and smoothed.

kg m™3. Supercooled daté245 point$ is from Hare and SorenséRef. 14

and Petiteet al. (Ref. 15 in the range—-34<T<0 °C, 1<p<500 bar. The
split in the data in the bottom-right corner of the figure is the result of
water's density anomaly.
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approximately four-coordinated structdrédumerous mix-

C. A. Jeffrey and P. H. Austin

B. Adding open hydrogen bonds to the new equation

ture models have been developed which treat these open teif state

rahedral HBs as a different species of water that, when

formed, can exert their own pressdfe*®in this section we

In order to improve the performance at supercooled tem-
peratures of the equation of state described in Sec. Il, we will

adapt a particularly simple mixture model developed by qe the approach of E¢25) with the following modifica-

Pooleet al? to the equation of state presented in Sec. II, ang

ions (discussed in greater detail belpw

use it to quantitatively predict the thermodynamic properties

of water at supercooled temperatures.

A. Free energy of open tetrahedral hydrogen bonds

The effect of hydrogen bonds on the thermodynamic be-
havior of liquid water can be described by a Helmholtz free

energy,Ays, that was approximated by Podd¢al? using a
partition function with two species of HBs

AHB: —fRT In[Qo+ eX[I— GHB/RT)]

—(1-H)RTIN(Qy+1), (22)

wheref is the fraction of HBs that are capable of forming
strong(open bonds with energye, g, and(Q) is the number

of configurations of weak bonds with energy 0. The configu-

ration number(),, can be written as

Qo=exp(—S/R),

whereS; is the entropy of formation of a mole of weak HBs.
Pooleet al? argued that strong HBs are most likely to occur
when the bulk molar volum# is equal to the specific vol-
ume of icel, (i.e., V4g=1.087 cnig™?), and therefore, ap-
proximatedf as

(23

f(V)=exp—[(V=Vyg)/a]?, (24)
where the parameter characterizes the width of the region
surroundingV,g in which strong HBs are able to form.

For their qualitative model Poolket al. took S, to be the

(1) Replacepgpscalculated using the van der Waal equation
in Eq. (25) with pgpsgiven by Eq.(19), using the values
for @, andb* found in Sec. 11 B 3.

Modify the Pooleet al. estimates of the energy of strong
hydrogen bonds and the entropy of the weak HBs-
creasing Sy| from 90 kImor*K =1 to 51 kJmol*K*
and|eyg| from 22 kImol?! to |eyg|~13.5 kImol?).
Replace the volume dependent expression for the strong
hydrogen bond fractiori(V) [Eg. (24)] with a tempera-
ture and density dependent expression that falls rapidly
to zero at temperatures above 0 °C.

Modify the temperature-dependent excluded volume
termb(T) in Eq. (19) to reflect the fact that, as water is
cooled below 20 °C, open hydrogen bonds act to de-
crease the density of the fluid, reducing the need for the
excluded volume ternb(T) to increase steeply at low
temperatures.

2

)

4

Beginning with item 2, we note that the total energy of
hydrogen bonds in wateE;y,, now has two contributions:
(i) the van der Waal's free energyyw=aywp [EQ. (14)],

(i) the bond energy contributed by strong HESjg=f e,
=Apst+ TdAus/dT. We estimateA,y at the density of ice

to be ~—14.2 kIJmol?! (assuming 2 moles of HBs/mole
wate.2? If we assume thaf=1 at temperatures below the
glass transition, whet® E,, ~—28 kJmol'l, then we
have Eyg=Eqoa— Ayw= €pg= — 13.8 kI molL. This value

for ey is close to the measured value o,
=—13.4 kImol? in supercooled wateé We will, there-
fore, assume that,g is approximately independent of tem-
perature and density, and that changes in the bond energy

entropy of formation of a mole of strong hydrogen bondsEwa @rise due to the temperature and density dependence of

(—90 JK tmol™1), chose a width parameter=0.25/,;5,

the fractionf of strong hydrogen bonds.

and used the van der Waals equation of state to supply the 1he entropy of the weak HBS,, can also be estimated

background attractive force due to clos@dnopen hydro-
gen bonds. The contribution of E(R2) to the total pressure
is therefore

P=Peost 2Pus (25

from simple physical arguments. At 1 bar and 100 °C the
entropy of water vapor is 196 J mdiK L. In liquid water

at 100 °C the configurationdi.e., total minus vibrational
entropy is about 26% of the total entropyln water vapor,

we would expect this percentage to rise somewhat since the
increase in bonded states should be greater than the increase

where pgog refers to the pressure calculated using the varin vibrational states. Therefore, as a lower bound on the

der Waals equation of state, apdg is determined using Eq.
(22) and the Maxwell relation

g

The factor of 2 in Eq(25) accounts for the fact there are
two moles of HBs for every mole of molecules. As we dis-
cuss in Sec. IV, Poolet al. showed that with these param-
eter values andg=—22 kJmol! (~80% of the HB en-
ergy of ice, Eq. (25 produces a second critical point at
positive pressure.

dA

2 -

magnitude of the entropy we takdSy|=0.26x196
JmolrtK =51 JmoltK~! per mole of water. Note that
in water vapor the hydrogen bond interaction is dominated
by dimer formation and, therefore, there is one mole of HBs
per mole of water molecules.

In addition, we will extend Eq(22) to include the pos-
sibility that there are) 5 configurations of strong HBs

AHB: —fRT |n[Qo+QHB eXF(_ EHB/RT)]
—(1-f)RTIn(Qo+Qpp), 27

where
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Qug=exp—Sy/R), (29) o
with Qg<Q,. <
For item 3, note that the volume dependence of the .
strong bond fractiorf given by Eq.(24) caused to increase -
as water is heated beyond its minimum specific volume at S ]
4 °C and atmospheric pressure. To prevent this spurious in- Q
crease irf we add a steep cutoff above the freezing tempera- - A=0.32409
ture vy Yip= 0.99985
<
{(T,p)=F*(p) I (T), (299 | I
1+ Cl SeT
f* (p) = / 2 C 1 (29b) O T T T T
extl(p~pue)/ o]+ Cy 05 10 15 20
f** (T)=exd —0.18 T/T;)?], (290 bp

whereT;=273.15 K and 8<C;<1. The density dependent FIG.5. 1G vsbp with the addition ofpg. Thep-V-T data(1319 pointy
term, f* (p), is a Gaussian-like function centered arOundis from Fig. 4 excluding 182 points near the critical point. For a fit to an
densit in analoayv to E (24) df** (T) i low- expanded range gf-V-T values that includes higher temperatures and wa-
) YPHB gy to Eql24), an (Tisa OW-PaSS  tor vapor see EqAL).

filter centered aff;. We have switched to density as our

dependent variable so that E§9) can be easily included in

the equation of state. The modified Gaussian of €§b = —11.490 kJ moit
was chosen to produce a more linear dependenck aof €He ' ’
density than the Gaussian of EQ4). Sp=—61.468 JmoltK™t,

To estimateos, we will assume an upper limit of the B 1u-1
effect of open HBs at the density of high-density amorphous Swe=—5.128 Jmol“ K™,
ice?? p=1.169 gcm>. Taking the lower limit of the den- pre=0.8447 gcm?,
sity of open HBs as the ice density=0.92 gcm>:

C,=0.7140, (32
20=1.169-0.92 gcm?, i
O':O.].S@i .
b,;=0.250 81,
Fitted values for the coefficientS€,; and o as well as the
hydrogen bond density,g will be determined in Sec. Ill C. b,=0.998 59,
Addressing item 4, we choose a new functional form for A=0.3241.
the excluded volume term(T) defined in Eq.(20) that re- ] ] ] o
duces the rise ib(T) at supercooled temperatures As in Sec. Il B 3, the final vglu_es of fitted coefflcen.ts. §uch
aseps, Sy, pus, ando are within 20%—-30% of their initial
b(T)/vg=0.2 exg —21.4T/Tg+0.0445%) estimated values.
b, exp(1.016T/Tg) +b,, (31) Figure 6 shows the effect of strong hydrogen bonds on

the excluded volume ternb(T). The solid line labeled
wherewg , Ty are the Boyle volume and temperature and val-b(12,6) is taken from Tacet al® and is appropriate for non-
ues for the coefficientd; andb, will be determined in Sec. polar fluids. This can be compared with the two versions of
Il C. b(T) given by Eq.(20) (dotted line, labeled b”) and Eq.
(20) (dashed line, labeled b with pyg” ). The inclusion of
pue produces a less rapid increasebifT) at lower tempera-
tures because the anomalous decrease in density at super-
cooled temperatures can be fit instead byghg term in Eq.

In this section we will employ the optimization proce- (25).
dure described in the addendtfhio determine values for Densities generated by E(R5) at pressures between 1
€us» Sos Sue» 0, pue, C1, b1, by and using Eq.(25) with  and 2800 bar are shown in Fig. 7. The inset shows the re-
Peosgiven by Eq.(19) andb(T) by Eq.(31). We findpyg in moval of the density maximum as the pressure is increased
Eq. (25) using Egs(26) and(27). Values forb* anda are  from 800 to 1200 bar. At low temperatures and pressures, the
taken unchanged from Sec. II B 3. formation of open HBs forces a local density commensurate

Figure 5 shows the final form of the fit using the data ofwith their perfect tetrahedral geometry. As a result the den-
Fig. 4 excluding 182 data points near the critical point. Thesity of water decreases with decreasing temperature. At
addition of pyg has brought the supercooled data in thehigher pressures, the pressure breaks the perfect geometry of
lower right hand corner of Fig. 4 into better agreement withthe HBs and the density maximum is absent.
the law of strong corresponding states, redudingp by a The removal of the density maximum with increasing
factor of 5. The coefficients returned from the fit &fe: pressure can also be seen in Fig. 8, which shows isotherms

C. The final form of the equation of state
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FIG. 6. Comparison of the excluded volurhes a function of the tempera-
ture normalized by the Boyle temperatufg. Solid line: b computed by
Taoet al. (Ref. 8 for a (12,6 potential. Dotted line: Eq(30) with coeffi-
cients determined by fitting E¢18) with the data of Fig. 2. Dashed line: Eq.
(30) with coefficients determined by fitting the equation of state with the
hydrogen bond term to the data of Fig. 4.

v (cm3g™)
FIG. 8. Isotherms showing the suppression of the density maximum at
higher pressure<) from Haaret al. (Ref. 42.

we show in Appendix B the equation of state reproduces
both the anomalous increase in heat capacity at 1 bar and low
temperatures and the decrease in heat capacity below 0 °C at
higher pressures.

In the next section we examine the behavior of the equa-

between—40 °C and 500 °C. Above=850 bar the super-
cooled isotherm(—40 °C) is denser than the 0 °C isotherm.
However,_ at low pressures, the supercooled |sot_herm CTOSSEBN of state at low temperatures in the metastable region of
the 0 °C isotherm and becomes less dense. This behavior {Re phase diagram.
consistent with the experimental evidence that the tempera-
ture of the density maximum is displaced to lower tempera-
tures by increasing pressueFurther discussion of the per- |v. THE THERMODYNAMIC BEHAVIOR OF WATER AT
formance of the equation of state with and without hydrogen ow TEMPERATURES
bonds is given in the addendufh.

The free energyA, entropyS and heat capacitg, can
also be obtained from E@25) using Eq.(26) and the Max-
well relations

In Sec. lll and Appendix A we added open hydrogen
bonds to the modified SMI equation of state, showing that it
can accurately reproduce the observed thermodynamic be-
havior of water over a wide range of temperatures and pres-
A S . : . . :

S= _(_> , Cp=T<—) ) (33  sures. In this section we will examine the be.haV|or of the
arj, It/ g equation of state at low temperatures for which the liquid
In Appendix B we derive expressions férfor the equation phase is metastable and, therefore, inaccessible to observa-
of state with and without strong hydrogen bonds, using eqion. Central to the prediction of the thermodynamic behav-
(33) to obtain the heat capacity for pressures between 1 an@’ of water at these temperatures is the behavior of the

800 bar and temperatures betweeB5 °C and 800 °C. As vapor—liquid spinodaf P(T), defined as the locus of iso-
chore minima satisfying

FIG. 7. Isobaric densityO from Haaret al. (Ref. 42, Hare and Sorensen

200 400 600 800

T(CO

(Ref. 14 and Petitett al. (Ref. 15.

(ﬁp) 0 (34
g o o
- — — 600 bar The behavior ofP4(T) is closely related to the question
— = 800 bar of whether water has a second critical point. One proposal,
an \% 8 . \ZT-\ first suggested by Speedy and Andglis the “stability limit
= e e conjecture,®®?” which postulates that in thp,T plane the
é” \::': -\,\"‘“ spinodal is “reentrant,” tracing a continuous curve from the
ag | ,, u.,,“‘\.:**' critical temperature and pressure to negative pressures,
o Soeosea TN where it reaches a minimum before returning to positive
—- 1200 bar pressures at supercooled temperatétes.
T aS0n par More recently, Pooleet al?#?® have proposed that the
— — 2800 bar phase diagram of water contains a new liquid—liquid spin-

odal terminating in a second critical point. This new spinodal
defines an area in which two forms of supercooled water
exist: Low-density water(LDW) and high-density water
(HDW). Thus in this theory the vapour—liquid spinodal is
divergent, as is the case for a simple van der Waals liquid.
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TABLE Il. Comparison of the critical parameters of a second critical point
¢ in water generated from the present equation of state with the estimations of
o other authors.
% -
per (kban  per (gem ) Teo (K)
e Present 0.954 1.045 228.3
9 S'_ g T =2283K Stanleyet al. (Ref. 30 1.2 185
= pc’ = 1045 kg m™ PonyatovsKiet al. (Ref. 46 0.33 225
c Tanaka(Ref. 33 -1.0 240
o Sciortinoet al. (Fig. 12 (Ref. 35 1.08 180
=B Sciortinoet al. (Fig. 13 (Ref. 35 1.2 200
Mishima and StanleyRef. 3] 1 220
O -
T T T T T T T
0.0 04 0.8 1.2 on measurements of decompression-induced melting of ice
p(gem™) V.
FIG. 9. The vapor—liquid spinodal terminating at a critical pdytand the The equilibrium line separating HDW and LDW is also
LDW-HDW spinodal terminating at a second critical polit. shown on Fig. 1Qshort-dashed line It is natural to associ-

ate HDW, which lies to the left of the equilibrium line, with
high-entropy—high-density amorphous-solid wat@alled

Because of the absence of a stability limit for supercooledVater Il by Speedf). Speed§? showed that Water II, ob-
water, there is a continuity of states between liquid and solidained by vapor deposition between 136 and 150 K, cannot
water. be connected to supercooled liquid water at 236 K by a ther-

The Pooleet al? mixture model described in Sec. Il A modynamically continuous and reversible path. This is also
can produce either a reentrant SpinodaL g|va| true of HDW for the new equation of state. Figure 10 shows
=14 kJ mo]']-, or a second ||qu|d_||qu|d SpinodaL given that HDW heated at atmOSpheriC pressure from 150 K inter-
lens| =22 kdmol™. In Figs. 9 and 10 we show the spin- Sects the HDW-LDW spinodal at 167 K without crossing
odals for the new equation of state, calculated using the cdghe equilibrium curve, and thus is not connected to LDW by
efficient values of Eq(32) and Appendix A. Even though & continuous path. The instability limit of 167 K predicted by
the best-fit|eyg|=11.5 kJ mol® for the new equation of the new equation of state is very close to the 170 K instabil-
state is smaller than Poole’s 14 or 22 kJ molthe new ity limit estimated by Speedsf. Figure 10 demonstrates that
equation of state produces a second LDW—HDW spinoda® thermodynamically self-consistent phase diagram of water
with a critical point aff =228 K,p.=954 bar. Figure 10is IS possible without moving the critical point to negative pres-
very similar to the phase diagram proposed by Peolal?®  sures as suggested by Tandka.
and Stanleyet al,*° with the exception of the termination of The temperature of maximum dens{#MD) line shown
the liquid—liquid spinodal at much larger positive and nega-on Fig. 10 consists of the locus of points for which the den-
tive pressuregnot shown. There have been a wide range of Sity given by the new equation of state is maximum. Figure
other estimates for the values of the critical parameters for 42 shows that, at positive pressures, the TMD line terminates
liquid—liquid spinodal. Some of these are listed in Table I1,at a spinodal as predicted by Speétifhe new equation of
including the recent estimate of Mishima and Staféased

v A
- —— Kt maxima
S . O TIP4P
N . Spinodal A ST2
(1 - - - Equilibrium . ,
YA —— TMD line = C
v A \\ ~_ A
\ T =2283K 3 O
| pc’ =0.954 kbar =

o C’ <
< . C o g i (m}
£° ]

o <=

! <
A
T T T T T
e | 200 220 240 260 280
' T T T T T (K)
0 200 400 600 FIG. 11. Comparison of isothermal compressibilitg) maxima between
T (K) the new equation of state of water, and the ST2 and TIP4P pote(Riafs

35). The line of Ky maxima exhibits a smooth transition from ST2 like
FIG. 10. Same as Fig. 9. Also shown are the equilibrium line and the TMDbehavior neap=0 kbar to TIP4P behavior at higher pressures, ending in a
line. second critical pointC').
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<1 - ) . Spinodal to force a density commensurate with an open tetrahedral
N Equilibrium hydrogen bond formation. Thus the behavior Kf* near
- E’Il]i)ngne p=0 kbar is similar to that produced by the ST2 potential.
] A ——  Tyline As the pressure increases, the effecppg is reduced with
. n — Krmaxima increasing densiticf. Eq.(29b)], and the behavior dk T is
CRMN \ similar to that found using the TIP4P potential.
@ o C \ Figure 12 shows an expanded view of the liquid-liquid
™ Taol \ spinodal, TMD line, equilibrium line, an&kT® line calcu-
\ \\ lated by the equation of state. We have also added two sets
S 1 \ \ of observations: The melting line from Wagnetral*® and
} homogeneous freezing temperature§,)X measured by
e S Kanno et al®” Figure 12 shows that at the pressure of the
. . . T . T T second critical poinfl kbapn, T;=218 K, 10 degrees lower
160 200 240 280 thanT.. This implies that this region of the phase diagram
T (K) may be experimentally accessible. Figure 12 also shows that

FIG. 12. The phase diagram of the new equation of state of water. Th@t 1.2 kbar the homogeneous freezing temperature is nearly
liquid—liquid spinodal terminates at a second critical poinCat(circled). coincident with the HDW—LDW equilibrium curve, suggest-

The temperature of maximum densitffMD) line intersects the LDW . . s
spinodal just aboveC’. At negative pressures the TMD line decreasesmg thatT,; may be determined by a phase transition from

with decreasing pressure. Also shown are ke maxima from Fig. 11. high-density (high-entropy liquid water to low-density

The melting temperatureT¢,) line is from Wagneret al. (Ref. 36. The  (high-entropy liquid water at these high pressures. The in-

homogeneous freezing temperatufg) line (Ref. 37 resembles the HDW creasing divergence de and the equi"brium line as tem-

o LDW equilibrium transition line a_b_ovec 1.2 kbar. It _is sugge_sted that a perature decreases is consistent with an increase in the hys-

strgg_rder HDW-LDW phase transition may determirig, at high pres- teresis of this first-order phase transition as the self-
diffusivity decreases. A phase transition would cause
immediate nucleation because of the sudden decrease in the

state gives a TMD at atmospheric pressure of 1.5 °C, 2.5 }{ce—watear .surface energy which according to a relgtion by
less than the experimentally measured maximum. This cahumbulf® is proportional to the latent heat of melting. A
be contrasted with the TMD calculated from molecular-discontinuity in the experimentally measur@ or in the
dynamics simulations using the ST2 and TIP4P interparticl§tatistics of the homogeneous nucleation progess, vol-
potential* The TIP4P potential produces a TMD in the UMe dependence, mean time before nucleation,), eic.
vicinity of 260 K, which is~17 K below the experimental found, would provide evidence in support of the liquid—
TMD at atmospheric pressufé.Thus the thermodynamic liquid splnoc_ial pre(_j|cted by the_new equation of state. Els_e-
anomalies predicted by TIP4P are somewhat weaker than yhere we discuss in more detail the use of the new equation
real water. The ST2 potential, on the other hand, exhibits Qf state to calé:kgate homogeneous nucleation rates for super-
TMD ~35 K above the experimental TMD, and therefore,coc’l‘“:'d water”
overestimates the thermodynamic anomalies of wAt&he
strong anomalous behavior of ST2 is attributed to the facb_ SUMMARY
that ST2 overemphasizes the tetrahedral character dfithe
bonding groups on the water molecéfe. We have developed a new analytic equation of state for
Another thermodynamic parameter that can be calcuwater that is accurate over a wide range of pressures
lated from the equation of state is the locus of isothermal0.1—3000 bay and temperatureé-34—1200 °Q, includ-
compressibility K1) maxima in the p,T) plane. Sastry ing the supercooled region. It consists of three pdisA
et al®* have shown that thi&k T® line is useful in character- modified form of the SMI equation of state that is accurate
izing the critical behavior of different numerical and analyti- for liquid water in thep-p-T range 0.Xp<1200 bar, 0
cal models of water. Sciortinet al*® have compared thié; <T<700 °C, 256 p<1015 kg m3; (i) A correction term
maxima produced by molecular-dynamics simulations usindased on a proposal by Tao and Mdsémat improves the
the ST2 and TIP4P potentials and found that ST2 produceability of the equation of state to predict vapor pressuiés;
maxima that increase quickly with decreasing temperatured term representing the contribution of open hydrogen bonds
terminating in a second critical point nea=2 kbar, T  to the free energy of the fluid, based on the approach of
=240 K. For TIP4P, the magnitude of the maxima is signifi- Pooleet al?

cantly smaller than for ST2 and Sciortire al>> were un- The attractive forces for the equation of state are mod-
able to determine if the line does, in fact, terminate in aeled by hydrogen bonds that contribute both internal energy
second critical point. and entropy terms to the total free energy of water. Consis-

Figure 11 comparel T calculated using the new equa- tent with current theories of liquifighe attractive forces are
tion of state and the ST2 and TIP4P potentials. K§&*line  assumed to make only a first-order contribution to the virial
for the equation of state lies between those calculated foexpansion. The repulsive forces are modeled using the strong
ST2 and TIP4P, which is consistent with the TMD behaviorprinciple of corresponding states developed by larmal.?
discussed above. At low pressuféswv densitieg the hydro-  with the temperature dependence of the repulsive force fit
gen bond ternpyg in Eq. (25) acts as a repulsive force trying using p-V-T data for water. We are able to make accurate
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initial guesses for the fitted coefficients using hydrogen bond bp
energy and entropy data. d(p)= e (A4)
We argue in Sec. Il that the energy of strong hydrogen 1+1.80bp)

bonds, eyg, should be~—13.5 kImol* a value that is  Tap and Mason also related the constakis A,, and « to
close to the optimal value returned by fitting the equation ofthe Pitzer acentric factor, as follows:

state top-V-T data that includes supercooled measurements.

We followed Pooleet al. in introducing these open tetrahe- A1=0.143,

dral bonds into the equation of state using a simplified par-  A,=1.64+2.6Fexp x—1.093 —1], (A5)
tition function, which we modified to include a temperature

dependence that suppressed open HB formation above the &=1.093+0.26 (w+0.002"+4.50 »+0.002].
melting line. The resulting equation of state quantitativelytne resulting equation far, is, therefore

reproduces all of the observed anomalous behavior of super- T

cooled water including(i) A density maximum near 0 °C at I, =A,(a—B,)b (e Ay (AB)
1 bar that is suppressed to lower temperatures with increas- * 't 2/5P 1+1.8bp)* '

ing pressure(ii) the anomalous increase in heat capacity at 1 .
bar and low temperaturesijii) a decrease in heat capacity To apply a correction of the form of EdA2) to_th_e
present equation of state, we modiffp) and&(T) to limit

below 0 °C at higher pressures. The melting point is accut™ ™ . ;
rately predicted at atmospheric pressure. their range of mfluence: The dense gas region quhe;LT
The new equation of state also predicts a quuid—liquidsurface is already v_veII fit, SO we Wa.n.t an expressmrxﬁ(qm)_
pihat decreases rapidly at high densities, and an expression for

spinodal and a second critical point at positive pressure. T . o
absence of a re-entrant spinodal is consistent with exper (T) that decreases rapidly above the critical temperature.
e also want both expressions to be bounde@i-a® K so

mental evidence that supercooled water does not approat ; ine the low-t ; behavi t th
the limit of stability upon cooling at atmospheric presstire. at we can examine the low-lemperature behavior ot the
equation of state in Sec. IV.

The locus of maxima of the isothermal compressibility lies .
between that predicted by molecular-dynamics simulations Versions of¢(p) andé(T) that have the necessary tem-

using the TIP4P and ST2 potentials. perature and density dependence are
We also find tha_t th_e (_equilibrium_lin_e between high- exd Aq(plpo) 9 .
density and low-density liquid water coincides closely to the  ¢(p)~ T 33 without pyg, (A7a)
measured homogeneous freezing temperature at pressures 1+As(plpe)
above 1.2 kbar. If the equilibrium line predicted by the equa- ex{As(plp)®
tion of state is accurate, we would expect that the nucleation pP)= W with pug, (A7b)

rate of rapidly supercooled droplets at pressures above 12,4

kbar is controlled by phase change, and is independent of (T—kTe)2+A,

droplet size and cooling rate. Such nucleation observations  ¢(T)=Aexd —As(T/Tc)®] 5 , (A8)
would provide useful information on the low-temperature Tc
properties of liquid water. wherex~1. Like Tao and Mason’s temperature dependence,

this expression increases as the temperature decreases, but
unlike Tao and Mason’s it decreases rapidly to zero above
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APPENDIX A: VAPOR CORRECTION TERM -
Tao and Masdhimproved the ability of the original SMI 2 7
equation of stat¢Eq. (8)] to predict vapor pressures by in-
cluding a correction term,; g. i
P=Peost 11p°RT, (A1) . . . . .
wherepgps is given by Eq.(8) anl, is given by 00 05 1.0 1.5 2.0
~(— ~(— bp
li~(a=B2)x(p,T)~(a=B)&(T) 4(p), (A2) FIG. 13. 1G vs bp using Eq.(18) which includes the hydrogen bond term
with pug @and the vapor correction teriq [Eq. (A2)]. Liquid data is the same as
Fig. 4 and water vapor has also been added from l¢aal. (Ref. 42. A
&) =A1(e"TC/T—A2), (A3) total of 1785p-V-T points were used.
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We have used two version @f(p) because we wantto [
include a vapor correction term to the equation of state both < .
; : . . - ol R -RTy
with and withoutp,z. Determination of the coefficients; ' - 0.04654
—Ag andk is done by refitting Fhe appropriate equat{&. o Dev=0.
(18) or (24)] to data that now includes 105 vapor measure- R .
ments in the range 80T<370 °C, 0.4 p<200 bar, 0.16 g
<p<145 kg m 3. Only the coefficientsA; —Ag and  are < & 1
varied, the other coefficients are fixed to the values deter- ;
mined in Sec. Il B 3 and Eq32). Figure 13 shows the final a4g ]
form of the fit for the full equation of state with both tipgg ' ]
and |, terms. As expected, the inclusion bf has a negli- o AN
gible affect on the ability of the new equation of state to 7 h
collapse liquid densities to a line. . . . . .
The values for the coefficients returned by the fit are 400 600 800 1200
without pHB with pHB T (K)
FIG. 14. —RTy vs T calculated from Eq(B3) along with rms deviation,
A;=-12.12 A;=-12.16 Dev. The points are calculated from Eg1) and data from Haeet al. (Ref.
A,=2.294X 10" A,=2.284x 10" 42) assumingS,=63.34 Jmol ! K~ andU,= —42.9 kJ mot ! at the triple
int.
As=13.60 A;=13.33 poin
A,=0.0527 A,=0.0610
As=1.8784 A;=1.873 _ _ _
«=0.8368 <= 0.8366. We approximate the undetermined functigiT) as a
smooth function of the non-dimensional paramet&gdT
APPENDIX B: FREE ENERGY AND HEAT CAPACITY gr;cé olxlbé/g, where\, a« andb(T) have values determined in
OF LIQUID WATER )
. . Tg \b T
We can determine the entrofand heat capacit¢,, of W)=+ hp— — + hz—. (B3)
liguid water using the analytic equation of stagthout the T a Ts
vapor correction terjnand the Maxwell relations Eq$25) Free energy data/(,.,) from Haaret al*! was used to

and (32). Integrating the pressure to obtain the free energyetermine the coefficients af(T) and A, in Eq. (B1) by
via Eq. (25 produces an undetermined function of tempera-minimizing the differenceAneas Aeos. The optimal fitted
ture, :(T) which we find by fitting the free energy predicted constants are found to beA,=21.47 kJmol! and

by the equation of state to measurements. In Sec. B 1 beloy, ,,,43) = (5.13, 20.04, and 2.73respectively.

we find an analytic expression f@r(T) for the equation of We plot the fitted function— RTy(T)=Agos—A; in

state without thepg term. Adding thep, term to the equa-  Fig. 14. For comparison we have included the measurements,
tion of state produces a nonintegrable expression for the empiotted asymeas Ameas— A1. The absolute entropyg,, and
tropy; in Sec. B 2 we estimate the resultigdT) as a re- internal energyl,, at the triple point were also needed in
sidual and show the resultingp . the calculation ofA.,s They were calculated from Cox

1. Free energy without pyg
The Helmholtz free energy ignoring hydrogen bonds,

Agos follows from integration of Eq(25) using Eq.(18) s |
Agos™ Aideal gas
p RTap?\dp = =
_ 2_ 2, iep \Ep v e
+L RTH p“—aywp ™+ 1-bp) 2 3 P
g
RTa —
:RT|Og p—RTU‘p—aVWp—ng(l—)\bp) 5009 4
_ -3 _
RT(log A™°+1)—RTy(T)+ A, - = AT (RTp)
T (RTy) - 2R
=Ay(p,T)—RTY(T), (B) S g JOT (RTy) - RinCd,
where A is the thermal wavelength in molar units given b ool
g given by 200 600 1000 1400
R5/32 T (K)
A=\ (B2)
2mm KBS’T FIG. 15. Plot ofd/dT(RTyg) obtained through EqB4) as described in

. . . . . Section B 2. The points are obtained from the entropy data of dgtat.
#(T) is an Und?termmed nondl_men5|or_1al function of tem-(ref. 42 and from the integrate@, data of Angell(Ref. 44. For compari-
perature, and\, is a constant of integration. son, d/ dT(RTy) — 2R In Qy wherey is given by Eq.(B3) is also shown.
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through Eq.(32) to decrease, not increase, the heat capacity.

N — 1bar about 6.15 Jmal* K~ at 1 bar is consistent with a continu-
T T 388 'Gar ous transition of states from supercooled water to ice.
I - .. . -
o 1'°:. —— 600 birr Although determining#(T) numerically prohibits us
—~ i1 —— 800bar from extrapolatingSgosto the deeply supercooled part of the
= i1 ——- 1200 bar . ) . )
o | 't 1600 bar phase diagram, we note that the sharp increasg,igeen in
D f 2200 bar Fig. 16 is due to the hydrogen bond teAyg, and not to the
o — — 2800 bar - : ; >
—5 o 4 fitted functionyyg(T). Negative values of(R Tyyg)/dT act
=
<

6

4
e
A %

/
7
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